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1. Introduction

A crucial issue in string theory is to identify a mechanism for supersymmetry breaking

which, at the same time, keeps the cosmological constant small, as current experimental

observations suggest the existence of a tiny positive cosmological constant (dark energy)

driving the expansion of the universe that we observe today. This has motivated the

search for four-dimensional de Sitter (dS) vacua in string theory. One possible approach

to this problem is to stay within the low-energy effective four-dimensional supergravity

description and first determine the conditions under which a metastable vacuum exhibiting

spontaneous supersymmetry breaking with a reasonably small cosmological constant can

possibly arise. One may then similarly ask under which conditions it is possible to realize
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slow-roll inflation in such a setup. While finding the answers to these questions may not be

sufficient for understanding the vacuum selection mechanism within string theory, it would

certainly be a useful guideline for model building.

Arranging for metastable dS vacua in generic supersymmetric theories turns out to

be surprisingly difficult. One of the reasons is that these vacua necessarily break super-

symmetry spontaneously and hence supersymmetry does not guarantee the stability of the

ground state. Actually, in refs. [1, 2] a necessary condition for the existence of metastable

dS vacua within generic N = 1 supergravity theories was identified.1 The crucial physical

ingredient exploited in these analyses is the fact that in the scalar field space the most

dangerous directions for metastability are the ones corresponding to the sGoldstinos, the

supersymmetric partners of the Goldstino. While all the other multiplets can be made

arbitrarily massive by suitably tuning the superpotential, the Goldstino multiplet is only

allowed to have mass splittings induced by supersymmetry breaking. Thus the requirement

for the sGoldstino square mass to satisfy the metastability bound (namely being positive in

dS space and within the negative Breitenlohner-Freedman (BF) bound [4] in anti de Sitter

(AdS) space) is independent of the superpotential but instead poses a strong necessary

condition on the curvature of the scalar geometry. More precisely, along the sGoldstino

direction the sectional curvature of the Kähler manifold spanned by the scalar fields has

to have a limited size. Since the sGoldstino direction is determined by the superpotential

this in turn poses also a constraint on the superpotential.

The aim of this paper is to pursue a similar study for N = 2 supergravity theories.

The motivation for doing this is two-fold: Firstly, the scalar field space of N = 2 su-

pergravity is not a special case of the N = 1 field space. Also, the scalar potential in

N = 2 theories is fixed by a gauging of isometries, while the one of N = 1 theories is gov-

erned by an arbitrary superpotential. This makes the two analyses qualitatively different.

Secondly, the hidden sector of string theory, where supersymmetry is believed to be spon-

taneously broken, often displays such an extended supersymmetry. Therefore an analysis

in extended supergravity theories seems to be more suitable to establish the relation with

higher-dimensional theories.

As a first step of this program we will focus in this paper on the simple situation of

N = 2 theories which involve only hypermultiplets and a graviphoton gauging. As we will

see in the body of the paper these theories are in some sense the analogs of N = 1 theories

with only chiral multiplets.2 The main result we find is that in N = 2 theories with only

hypermultiplets metastability implies a negative upper bound on the cosmological constant

and therefore dS vacua (as well as slow-roll inflation) are always excluded. A similar

conclusion was also reached in the other particular situation of N = 2 theories involving

only vector multiplets and Abelian gaugings, where metastability forces the cosmological

constant to be negative [5, 6]. The study of more general situations, involving both hyper

and vector multiplets and/or non-Abelian gaugings, is left to a subsequent paper [7]. In

1See also [3] for an analysis with similar spirit applied to the idea of landscape of vacua.
2However, they have the peculiarity of becoming trivial in the limit of rigid supersymmetry, where the

graviphoton is decoupled. Indeed, in rigid N = 2 theories without vector multiplets the scalar potential

vanishes identically.
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this more general type of theories a richer variety of possibilities is expected to exist. In

fact some particular examples of stable dS vacua have already been constructed in this

context, for instance in refs. [8, 9] exploiting non-Abelian gauge symmetries.

The paper is organized as follows. In section 2 we briefly review the results of refs. [1, 2]

using a formalism that is tailored for the transition to N = 2 theories. In fact we slightly

generalize the previous analyses in that we also derive a constraint for the existence of

metastable AdS ground states with spontaneously broken supersymmetry. In section 3 we

show that in N = 2 supergravities with only hypermultiplets no metastable dS ground

states exist and derive a bound for the non-supersymmetric AdS vacua. Finally, in section

4 we summarize our conclusion and give an outlook on future directions of investigation.

For completeness, we record the computations of the supertrace sum rules on boson and

fermion masses for N = 1 and N = 2 theories in appendix A. We also summarize our

conventions for the curvature of real and complex manifolds in appendix B.

2. N=1 theories with chiral multiplets

In order to prepare for the analysis in N = 2 supergravity, we shall start by briefly reviewing

the conditions for the existence of metastable vacua in spontaneously broken N = 1 super-

gravity. We follow our earlier papers [1, 2] but use a slightly modified formalism, which

makes the transition to N = 2 theories somewhat more suggestive. Furthermore, in [1, 2]

we concentrated on finding dS vacua whereas in the following we extend the analysis to

also include non-supersymmetric AdS vacua.

2.1 Preliminaries

Let us consider a generic N = 1 theory with n chiral multiplets Φi, containing complex

scalar fields φi and chiral fermions χi [10]. This theory is described by a superpotential W

and a Kähler potential K which defines a Kähler-Hodge geometry with a metric for the

scalar fields given by gi̄ = Ki̄. The theory has a U(1) Kähler invariance which transforms

K → K + f + f̄ and W → We−f . The holonomy of the scalar manifold is contained in

U(1) × U(n), where the U(1) curvature form is identified with the Kähler form while the

U(n) curvature is arbitrary.

Instead of choosing a Kähler gauge and describing the theory in terms of the invariant

function G = K+log|W |2, we will use instead a different formulation where this symmetry

is kept manifest. For this purpose, it is useful to introduce the quantity

L ≡ eK/2W . (2.1)

L transforms with weight 1
2 under Kähler transformations: L → e−(f−f̄)/2 L. It is then

convenient to define covariant derivatives ∇ which include the U(1) Kähler connection in

addition to the standard metric-compatible Christoffel connection. On a scalar quantity of

weight p, for instance, one has ∇i = ∂i +pKi and ∇ı̄ = ∂ı̄ −pKı̄. The covariant derivatives

of L are then found to be:

∇ı̄L = 0 , ∇iL = eK/2
(

Wi +KiW
)

. (2.2)
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From here one can see that L is covariantly anti-holomorphic with its holomorphic covariant

derivative being related to the order parameters of supersymmetry breaking. Indeed the

supersymmetry transformation of the fermions include the term δǫχ̄
ı̄ = −

√
2 ǭ gı̄jNj + . . . ,

where the fermionic shifts Ni are given by:

Ni ≡ ∇iL . (2.3)

For future reference let us also record the anti-holomorphic derivatives of Ni. These are

simply given by

∇̄Ni = gi̄ L ⇒ ∇iN̄
j = δj

i L̄ . (2.4)

Also note that since ∇i involve both the Christoffel connection and the U(1) Kähler

connection, the commutator of two covariant derivatives acting on an object of non-zero

U(1) weight has an additional piece coming from the U(1) curvature. For instance, on the

fermionic shift one has:
[

∇i,∇̄

]

Nk = Ri̄ks̄N̄
s − gi̄Nk , (2.5)

where Ri̄ks̄ is the Riemann tensor of the Kähler manifold. (Our curvature conventions are

summarized in appendix B.)

2.2 Mass matrices

Using the notation that we just introduced, the scalar potential V takes the following

simple form:

V = N̄ iNi − 3|L|2 . (2.6)

Its first derivative is then given by:

∇iV = −2NiL̄+ N̄ j∇iNj . (2.7)

Stationary points satisfy ∇iV = 0, and correspond to values of the scalar fields for which

N̄ j ∇iNj = 2NiL̄.

Let us now compute the bosonic and fermionic mass matrices at a generic stationary

point. The scalar masses are given by the second derivatives of V . These are easily

computed and can be partly simplified by using the identity (2.5). One finds:

∇i∇̄V = −2gi̄|L|2+ ∇iNk∇̄N̄
k−Ri̄pq̄N

pN̄ q̄+ gi̄N̄
kNk −NiN̄̄ ,

∇i∇jV = −∇iNjL̄+ N̄k∇(i∇j)Nk .
(2.8)

The two independent blocks for the mass matrix are then given by:

m2
0i̄ = ∇i∇̄V , m2

0ij = ∇i∇jV . (2.9)

The fermionic mass matrix is also easy to compute. The mass terms for the physical

fermions and the gravitino field can be read off from the following fermionic terms in the

Lagrangian:

L fm = − Lψµσµνψ
ν − L̄ψ̄µσ̄µνψ̄

ν − i√
2
Niχ

iσµψ̄
µ +

i√
2
N̄̄χ̄

j σ̄µψ
µ

− 1

2
Mijχ

iχj − 1

2
M̄ı̄̄χ

ı̄χ̄ + . . . ,

(2.10)
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where

Mij ≡ ∇iNj = ∇i∇jL . (2.11)

In the ground state the gravitino ψµ can be disentangled from the chiral fermions by the

redefinition

ψ̃µ = ψµ +
i

3
√

2
L−1N̄ σ

µχ̄ , (2.12)

where L and N̄ are evaluated at the minimum of V . This results in the following mass

matrices for the physical fields:

m3/2 = L , m1/2ij = Mij −
2

3
L−1NiNj = ∇iNj −

2

3
L−1NiNj , (2.13)

The mass matrices (2.9) and (2.13) obey a supersymmetric sum rule, which we record

in appendix A.1.

2.3 Goldstino and sGoldstinos

As we already recalled, supersymmetry is spontaneously broken if in the vacuum Ni 6= 0.

The associated Goldstino fermion is then given by the linear combination η = Niχ
i. This

can be seen from the non-linear supersymmetry transformation of η and/or from the fact

that in a Minkowski vacuum the vector Ni is a null vector of the physical mass matrix

m1/2ij . Indeed, from (2.11) and the stationarity condition following from (2.7) it is easy to

see that MijN̄
j = 2L̄Ni. Using then (2.6) and (2.13) this implies

m1/2ijN̄
j = −2

3
L−1V Ni , (2.14)

with the right hand side being zero when V = 0. The Goldstino field η = Niχ
i has therefore

a mass parameter which vanishes in Minkowski space and has a fixed value in units of the

cosmological constant in AdS space:

mη = −2

3
m−1

3/2V . (2.15)

Finally the complex sGoldstino, i.e. the scalar field describing the supersymmetric partners

of the Goldstino, is defined analogously by η̃ ≡ Niφ
i.

2.4 Stability of supersymmetric vacua

Although in this paper we are interested in the stability of ground states with spontaneously

broken supersymmetry, let us briefly present the proof that supersymmetric ground states

are always stable. In this case one has Ni = 0, which automatically implies the sta-

tionarity condition coming from (2.7) and a semi-negative definite cosmological constant

V = −3 |L|2. Moreover, the scalar mass matrix simplifies as follows:

m2
0i̄ = ∇iNk∇̄N̄

k − 2gi̄|L|2 , m2
0ij = −L̄∇iNj . (2.16)

– 5 –
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Looking along an arbitrary direction vI = (vi, vı̄) in field space with normalization vIvI = 1

(or vivi = 1/2), one finds:

m2
0 = m2

0IJ̄ v
IvJ̄ = 2m2

0i̄ v
iv̄ +m2

0ij v
ivj +m2

0ı̄̄ v
ı̄v̄

=
1

2

(

2vi∇iNk − vkL
)(

2v̄∇̄N̄
k − vkL̄

)

− 9

2
vivi |L|2 . (2.17)

In the last expression, the first term gives a semi-positive definite contribution so that m2
0

satisfies the BF [4] bound3

m2
0 ≥ 3

4
V . (2.18)

Notice that a minimal m2
0 which saturates the bound can only be achieved along the

special complex directions vi
0 for which the semi-positive terms are zero. These directions

correspond to pseudo-eigenvectors of the matrix Mij , in the sense that M ̄
i v0 ̄ = 2Lv0 i.

2.5 Stability of non-supersymmetric vacua

Let us now turn to the stability of non-supersymmetric vacua, that is, those for which

Ni 6= 0. This is largely discussed in refs. [1, 2] and here we only briefly recall the results.

However we do extend our previous analysis in that we also include non-supersymmetric

AdS ground states.

As was explained in detail in refs. [1, 2] the most stringent constraints on the stability

of the ground state come from the directions of the two sGoldstinos. Therefore we focus

on the sGoldstino subspace defined by the complex direction Ni and consider the quantity

m2
η̃ ≡

m2
0i̄N̄

iN ̄

N̄kNk
. (2.19)

With the help of (2.6), (2.7) and (2.8) this can be rewritten as

m2
η̃ = Rη̃N̄

iNi + 2|L|2 = 3

(

Rη̃ +
2

3

)

|m3/2|2 +Rη̃ V , (2.20)

where Rη̃ is the normalized holomorphic sectional curvature along the sGoldstino direc-

tion, namely

Rη̃ = −Ri̄pq̄N̄
iN ̄N̄pN q̄

(N̄kNk)2
. (2.21)

The crucial observation is that m2
η̃ represents an upper bound for the value of the

smallest eigenvalue of the full mass matrix [1, 2].4 Therefore a necessary condition for

stability is that the value of m2
η̃ should be non-negative for dS or Minkowski vacua and

3In AdSd the BF bound is given by m2R2 ≥ − 1

4
(d − 1)2, where R is the AdS radius. For d = 4 and

R2 = −3V −1 this leads to the bound (2.18).
4In fact, the quantity m2

η̃ arises as half of the trace of the two-dimensional submatrix of the full mass

matrix along the two independent real directions that can be formed out of the complex Goldstino direction.

It thus corresponds to the average of the two sGoldstino square masses. The splitting of these two masses

depends explicitly on the superpotential and its derivatives, and is therefore less interesting.
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should satisfy the BF bound (2.18) for AdS vacua. It is convenient to phrase the discussion

in terms of the following dimensionless parameter γ defined as

γ ≡ V

3 |m3/2|2
. (2.22)

Minkowski/dS vacua correspond to γ ∈ [0,+∞) while AdS vacua have γ ∈ [−1, 0] since

the cosmological constant is bounded to be larger than its critical supersymmetric value

V ≥ −3|m3/2|2. Stability requires m2
η̃ ≥ 0 for dS vacua and m2

η̃ ≥ 3
4 V for AdS vacua

which, using (2.20) and (2.22), can be viewed as the following bound for Rη̃:
5

Rη̃ ≥















−2

3

1

1 + γ
for γ ≥ 0 ,

−2

3

1 − 9
8 γ

1 + γ
for − 1 ≤ γ ≤ 0 .

(2.23)

From this expression we see that the condition for finding metastable vacua with

broken supersymmetry becomes more and more restrictive as the cosmological constant is

increased: AdS vacua with minimal cosmological constant (γ → −1) can always exist, as

in such a case the condition simply reads Rη̃ > −∞. On the other hand, Minkowski vacua

(γ = 0) can exist only if Rη̃ ≥ −2
3 . Finally, dS vacua with large cosmological constant

(γ → +∞) can exist only if Rη̃ ≥ 0. The maximal freedom is therefore obtained in those

models in which the sectional curvature Rη̃ either vanishes or turns out to be positive.

Notice finally that in the limit in which gravity is decoupled by sending the Planck

scale to infinity while keeping the other scales fixed, the value of the quantity m2
η̃ simplifies

to the following expression:

m2
η̃ ≃ 3Rη̃(1 + γ)|m3/2|2 . (2.24)

The standard limit of rigid supersymmetry can be obtained by further sending m3/2 to

zero. In that limit one finds m2
η̃ ≃ Rη̃V .

Another interesting thing to note is the fact that the product of several Kähler-Hodge

manifolds is again a Kähler-Hodge manifold. Thanks to this property, it is actually easy

to construct models satisfying the necessary condition (2.23). Indeed, starting with some

manifolds Mi with sectional curvatures that are negative and bounded by some finite

maximal values Ri, one can construct the product manifold M = ×iMi and find directions

along which the sectional curvature is still negative but larger (i.e. closer to zero) than any

of the individual Ri, the maximal possible value being Rmin = (
∑

iR
−1
i )−1. This means in

particular that, by taking sufficiently many copies of any given Kähler manifold, one can

always satisfy the condition (2.23).

The fact that a Kähler manifold can factorize into several Kähler submanifolds also

allows for situations in which the scalar fields spanning some of the submanifolds are

5Note that we use here and in (2.21) a different sign convention for the Ricci-, scalar- and sectional

curvatures of Kähler manifolds compared to refs. [1, 2], although the Riemann tensor is defined in the same

way. This is needed to consistently compare with the corresponding quantities for quaternionic-Kähler

manifolds arising in next section. See appendix B for more details.
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stabilized in a supersymmetric way whereas the scalar fields spanning the rest of the sub-

manifolds spontaneously break supersymmetry, provided that the superpotential also has

some special properties. For the non-supersymmetric sector, one would get again a condi-

tion like (2.23), where Rη̃ now refers to the relevant supersymmetry-breaking submanifold.

For the supersymmetric sector, on the other hand, one should be careful as stability is

not guaranteed in this case due to the fact that the cosmological constant is sourced by

the other sector and departs from its critical supersymmetric value. As was shown in [11]

for the particular case in which the two sectors interact only gravitationally, this cases

cannot be viewed in general as a continuous limit of a supersymmetry breaking situation

and therefore the stability of such vacua must then be studied separately.

3. N = 2 theories with hypermultiplets

So far we have reviewed the stability of non-supersymmetric ground states in N = 1 super-

gravity. Now we will move to the main topic of this paper and we will extend this analysis

to the case of N = 2 supergravity coupled to an arbitrary number of hypermultiplets.

3.1 Preliminaries

Let us begin by reviewing the relevant aspects of the N = 2 theories and fix some conven-

tions. For more details see, for example, refs. [12 – 15].6 The gravitational multiplet con-

tains the space-time metric gµν , a pair of gravitini ψA
µ , A = 1, 2 and an Abelian graviphoton

Aµ. This multiplet can be coupled to n hypermultiplets H i, i = 1, . . . , n which contain 4n

scalar fields qu, u = 1, . . . , 4n and 2n fermions ξα , α = 1, . . . , 2n. The scalar fields qu span

a quaternionic-Kähler manifold of dimension 4n with holonomy group Sp(2n) × SU(2).

On a quaternionic-Kähler manifold there exists a triplet of almost complex structures

Jx, x = 1, 2, 3 which satisfy an SU(2) algebra. Associated with them is a triplet of Hy-

perkähler two-forms Ωx which consequently obey

Ωx
uwΩyw

v = −huvδ
xy − ǫxyzΩz

uv , (3.1)

where huv is the quaternionic metric. Furthermore, the Ωx are identified with the field

strength of the SU(2) part of the holonomy group and as a consequence they are covariantly

constant with respect to the SU(2) connection: ∇wΩx
uv = 0.7 Here and in the following,

∇u denotes a covariant derivative involving also the SU(2) connection.

Our conventions are as follows. The SU(2) doublet indices A,B are raised and lowered

in the usual way with the antisymmetric tensors ǫAB and ǫAB and the matrices σx B
A denote

the usual antisymmetric Pauli matrices. The matrices σx
AB and σxAB are then symmetric

6In the following we discuss gauged N = 2 supergravity in the standard electric frame following refs. [12 –

15]. In principle it is also possible to gauge with respect to the magnetic graviphoton (see, for example,

refs. [16]). However, if only the graviphoton is present, the symplectic rotation connecting the two cases is

trivial and thus, without loss of generality, we can confine our discussion to the electric case.
7In fact Ωx only needs to be proportional to the Hyperkähler two-forms, but the proportionality factor

controls the normalization of the scalar kinetic terms and is thus important. We fix it to −1, as is usually

done in the literature (corresponding to λ = −1 in [13, 14] and ν = −2 in [15]).
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and satisfy (σx
AB)∗ = −σxAB. They relate SU(2) triplets to the symmetric product of

two SU(2) doublets, and can be used to alternatively describe any triplet as a bi-doublet

through the definition ξAB ≡ iξxσxAB. Moreover, they satisfy the identity:

σx
ABσ

x
CD = 2ǫA(CǫBD) . (3.2)

For the Sp(2n) group, we denote by α, β = 1, . . . , 2n the 2n-plets indices. These are raised

and lowered with the antisymmetric symplectic tensors Cαβ and Cαβ.

It is convenient to define a vielbein UαA
u for the quaternionic metric by the rela-

tion huv = UαA
u UβB

v ǫABCαβ. The inverse vielbein Uu
αA then satisfies Uu

αAU
αA
v = δu

v and

UαA
u Uu

βB = δα
β δ

A
B . These actually satisfy the stronger relations huv = ǫABU

αA
u UB

vα and

Ωx
uv = −iσx

ABU
αA
u UB

vα, or Uu
αAU

v
βBhuv = ǫABCαβ and Uu

αAU
v
βBΩx

uv = −iσx
ABCαβ , which are

conveniently summarized in the identity:

UαA
u UB

αv =
1

2
huvǫ

AB− i

2
Ωx

uvσ
xAB . (3.3)

The curvature consists of an SU(2) part and an Sp(2n) part with the corresponding

curvature forms given by:

RAB
uv = −iΩx

uvσ
xAB , Rαβ

uv = ǫABU
γA
[u U δB

v]

(

−2 δα
(γδ

β
δ) + Σαβ

γδ

)

. (3.4)

The tensor Σαβγδ must be completely symmetric but is otherwise arbitrary, and represents

the only freedom in the curvature. The full Riemann tensor with two ‘flat’ index-pairs

is given by RαAβB
uv = RAB

uv C
αβ + Rαβ

uv ǫAB. Using eq. (3.2) the curvature with only flat

indices is found to be

RαAβBγCδD = 2 ǫA(CǫBD)CαβCγδ + ǫABǫCD

(

−2Cα(γCβδ) + Σαβγδ

)

. (3.5)

Its version with only curved indices is instead given by:

Ruvrs = −hu[rhvs] − Ωx
uvΩ

x
rs − Ωx

u[rΩ
x
vs] + Σuvrs , (3.6)

where:

Σuvrs = ǫABǫCDU
αA
u UβB

v UγC
r U δD

s Σαβγδ . (3.7)

The tensor Σuvrs behaves like a Weyl component of the Riemann tensor, in the sense that

any contraction with the metric vanishes. This implies that the Ricci tensor is completely

universal and that quaternionic-Kähler manifolds are Einstein manifolds with

Ruv = −2(n+ 2)huv , R = −8n(n+ 2) . (3.8)

So far we have discussed the ungauged N = 2 theory. Let us now turn to the situation

in which an isometry of huv is gauged with the graviphoton Aµ. In this case the scalars

are charged under the isometry group and transform as δqu = Λ ku(q), where Λ is the

space-time dependent gauge parameter while ku(q) is the Killing vector, which satisfies the

Killing equation

∇(ukv) = 0 . (3.9)
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In the Lagrangian all the space-time derivatives acting on scalar fields are then replaced

by covariant derivatives, of the form Dµq
u ≡ ∂µq

u + kuAµ.

On a quaternionic-Kähler manifold, any Killing vector ku can be expressed in terms

of a triplet of Killing potentials P x, defined by

∇uP
x = 2Ωx

uvk
v . (3.10)

Actually one can also relate ku and P x as:

ku = −1

6
Ωx

uv∇vP x , P x =
1

2n
Ωx

uv∇ukv . (3.11)

One also finds the following relations for the second derivatives of these quantities:
[

∇u,∇v

]

P x = 2 ǫxyzΩy
uvP

z ,
[

∇u,∇v

]

kw = Ruvwsk
s ,

∇u∇vkw = −Rvwusk
s .

(3.12)

Moreover, P x and ku satisfy the harmonic equations

∇w∇wP
x = 4nP x , ∇w∇wku = 2(n + 2) ku . (3.13)

Finally, the derivatives of the Killing potentials P x turn out to be related to the order

parameters of supersymmetry breaking. Indeed, the supersymmetry transformation of the

hyperini has the form δξα = NA
α ǫA + . . . , where the fermionic shifts NA

α are given by:

NA
α = 2UA

uαk
u =

1

3
Uu

αB∇uP
AB . (3.14)

3.2 Mass matrices

The scalar potential can be expressed in terms of the Killing vector and the Killing poten-

tials, and takes the following simple form:

V = Nα
AN

A
α − 3P xP x = 4 kwkw − 3P xP x . (3.15)

Its first derivatives are given by

∇uV = 8 kw∇ukw − 6P x∇uP
x , (3.16)

and stationary points where ∇uV = 0 are thus characterized by the condition kw∇ukw =
3
4P

x∇uP
x.

The scalar mass matrix at a stationary point of the potential is related to the second

derivatives of the potential. These are found to be:

∇u∇vV = 8∇uk
w∇vkw − 8Rusvtk

skt− 6∇uP
x∇vP

x− 6P x∇(u∇v)P
x . (3.17)

In the conventions we are following, the kinetic term of the scalar fields has the non-

canonical form Lkin = −huvDµq
uDµqv. The properly normalized mass matrix for the

scalars is thus given by:

m2
0uv =

1

2
∇u∇vV . (3.18)
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The square mass of the graviphoton is induced by the connection terms in the covariant

derivatives of the scalars kinetic term. Taking into account that with the conventions we

are following the kinetic term for the graviphoton has the non-canonical form Lkin =

−1
8FµνF

µν , one deduces that:

m2
1 = 4kuku . (3.19)

The mass terms for the hyperini and the gravitini can be read off from the fermionic

part of the N = 2 Lagrangian

L fm = PABψ̄
A
µ γ

µνψB
ν + P̄ABψ̄Aµγ

µνψνB + 2iNA
α ξ̄

αγµψ
µ
A + 2iNα

A ξ̄αγµψ
µA

+Mαβ ξ̄
αξβ + M̄αβ ξ̄αξβ + . . . , (3.20)

where

Mαβ = −Uu
αAU

v
βBǫ

AB∇[ukv] = −1

6
Uu

αAU
v
βB∇u∇vP

AB . (3.21)

In order to disentangle the gravitino from the Goldstino, one redefines

ψ̃µA = ψµA +
i

3
P−1ABNβ

Bγ
µξβ , (3.22)

which results in the following mass matrices for the physical fermions and the two gravitini8

m1/2αβ = Mαβ − 4

3
P̄−1

AB N
A
α N

B
β = −Uu

αAU
v
βB

(

ǫAB∇[ukv] +
16

3
PAB |m3/2|−2kukv

)

,

m3/2AB = PAB . (3.23)

Thus, the gravitino mass scale is simply given by:

|m3/2| =
√
P xP x . (3.24)

Comparing with the formulation of N = 1 theories described in section 2, we can now

identify the generalization of each ingredient to the N = 2 case. We see that P x is the

generalization of L while NA
α is instead the generalization of Ni.

3.3 Goldstinos and sGoldstinos

Supersymmetry is spontaneously broken whenever NA
α 6= 0 on the vacuum. The corre-

sponding two Goldstino fermions are then given by ηA = NA
α ξ

α. Using the stationarity

condition following from (3.16) and the properties of the vielbein one can show that

MαβN
β
A = 2PABN

B
α . (3.25)

Using (3.23) together with the relation Nα
AN

B
α = 2 kwkw δ

B
A , eq. (3.25) implies

m1/2αβ N
β
A = −2

3
V P̄−1

ABN
B
α . (3.26)

8Notice that PAC P̄ CB = P xP x δB
A . It follows that P−1AB = (P xP x)−1P̄ AB and similarly P̄−1

AB =

(P xP x)−1PAB .
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Thus we see again that the normalized mass matrix for the two Goldstinos vanishes iden-

tically in Minkowski space and has a fixed form in units of the cosmological constant in

AdS space:

mηAB = −2

3
m−1

3/2ABV . (3.27)

The two independent Goldstino fermions ηA = NA
α ξ

α, which transform as a doublet

under SU(2), have four real sGoldstino partners given by η̃AB = NAB
u qu. The quantity

NAB
u transforms as the tensor product of two SU(2) doublets, and can be computed by

acting with the inverse vielbein UαA
u on NB

α . This is a result of the fact that UαA
u locally

maps the tangent space where the fermions are defined to the coordinates of the manifold

associated with the scalar fields. More precisely, one finds:

NAB
u = UαA

u NB
α = Nu ǫ

AB + iNx
u σ

xAB , (3.28)

where in the second equation we used the identity (3.3) to decompose NAB
u into a singlet

Nu plus a triplet Nx
u with

Nu = ku , Nx
u = −Ωxv

u kv = −1

2
∇uP

x . (3.29)

The four-dimensional space of sGoldstino directions can thus be parameterized by

(Nu, N
x
u ).9 These vectors form an orthonormal basis, in the sense that:

NuNu = kuku , NxuNy
u = kuku δ

xy , NuNx
u = 0 . (3.30)

It is then convenient to use the fields η̃ = Nuq
u and η̃x = Nx

u q
u to parameterize the four

independent sGoldstinos.

3.4 Stability of supersymmetric vacua

Let us consider first the case of supersymmetric vacua. Unbroken supersymmetry implies

ku = 0 ⇒ Nu = Nx
u = 0 . (3.31)

As usual, any point in the scalar field space where these conditions are fulfilled is automat-

ically a stationary point of the potential, as can be seen from eq. (3.16). At such points

the cosmological constant is negative and given by V = −3P xP x. Moreover, the mass

matrix (3.18) simplifies and can be rewritten as

m2
0uv = 4∇uk

w∇vkw − 3P x∇(u∇v)P
x

= 4
(

∇uk
w − 3

4
P xΩxw

u

)(

∇vkw − 3

4
P yΩy

vw

)

− 9

4
huvP

xP x .
(3.32)

In the last expression, the first term is semi-positive definite, so the value of the mass matrix

along any normalized direction vu, with vuvu = 1, satisfies the BF bound (2.18) which

guarantees stability: m2
0 = m2

0uvv
uvv ≥ 3

4 V . Note that the directions vu
0 in field space for

which this bound is saturated satisfy an equation of the form (∇ukv)v
v
0 = 3

4 P
xΩx

uvv
v
0 .

9Note that Nx
u conjugates Nu with respect to each of the three almost complex structures Ωxv

u .
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3.5 Stability of non-supersymmetric vacua

Let us now study the conditions under which metastable non-supersymmetric vacua can

exist. Spontaneously broken supersymmetry implies

ku 6= 0 ⇒ Nu, N
x
u 6= 0 . (3.33)

One can then study the mass matrix in the four-dimensional subspace of sGoldstino di-

rections spanned by the four vectors Nu = ku and Nx
u = −Ωxv

u kv. Gauge invariance of

the potential implies however that at any stationary point the vector Nu is a flat direc-

tion of the potential, corresponding to the would-be Goldstone boson that is eaten by the

graviphoton. Let us then study the mass matrix in the three-dimensional subspace defined

by the vectors Nx
u given by

m2xy
η̃ =

m2
0uvN

uxNvy

NwNw
. (3.34)

This expression form2xy
η̃ can be simplified using equations (3.17) and (3.18) and the station-

arity condition coming from (3.16).10 One then finds, after a straightforward computation,

the following simple expression

m2xy
η̃ = −4

(

Rxy
η̃ + 3 δxy

)

kwkw + 4
(

δxy − πxy
)

P zP z , (3.35)

where

πxy =
P xP y

P zP z
(3.36)

is the projector along the direction defined by P x and Rxy
η̃ is given by

Rxy
η̃ =

RusvtN
uxN sNvyN t

(NwNw)2
. (3.37)

This quantity is something like a tri-holomorphic sectional curvature for the quaternionic

directions NAB
u , in the sense that its diagonal elements correspond to the three independent

holomorphic sectional curvatures that one can build out of Nu and one of its conjugates

Nx
u = Jx

uvN
v. Using the expression (3.6) for the Riemann tensor, one can evaluate Rxy

η̃

more explicitly, and express it in terms of the tensor Σαβγδ. One actually finds:

Rxy
η̃ = −2 δxy − ΣαβγδN

αANβBNγCN δD

(N ǫENǫE)2
σx

ABσ
y
CD . (3.38)

Metastability of the vacuum requires that the eigenvalues of the three-dimensional

matrix m2xy
η̃ given in (3.35) should be either positive or above the BF bound, depending

on the sign of the cosmological constant. This condition depends on the tensor Σαβγδ in

a non-trivial way, and can be understood as a constraint on it. More precisely, it restricts

the values that the curvature is allowed to take in the subspace of sGoldstino directions.

10The main intermediated step needed is the relation ∇wku∇wP x = 3P xku + 1

2
ǫxyzP y∇uP z. This can

be derived by taking a derivative of the identity kw∇wP x = 0 and using then the stationarity condition

and the first relation in (3.12).
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As in the previous section, to analyze the implications of the metastability constraints it is

convenient to parametrize the value of the cosmological constant through the dimensionless

parameter γ = V/(3|m3/2|2).
To study the matrix m2xy

η̃ , it is convenient to switch to a basis of eigenvectors of the

projector πxy, which we shall denote by vx
i , i = 1, 2, 3, for the eigenvalues λi = (1, 0, 0) (so

that vx
1 is the direction defined by P x and vx

2,3 span the subspace orthogonal to it). These

vectors can be chosen in such a way as to form an orthonormal and complete basis of the

three-dimensional space under consideration, with:

πxyvy
i = λiv

x
i (no sum on i) and λi = (1, 0, 0) ,

vx
i v

x
j = δij , vx

i v
y
i = δxy .

(3.39)

In this new basis, the matrix m2
η̃ij ≡ m2xy

η̃ vx
i v

y
j is still not diagonal. But each of its

diagonal elements must nevertheless necessarily satisfy the metastability bound on their

own. These three elements define indeed the values of the square mass along the three

special orthogonal directions vx
i N

x
u , which we shall denote by:

m2
η̃i ≡ m2xy

η̃ vx
i v

y
i (no sum on i) . (3.40)

Using (3.35) and (3.39) one computes

m2
η̃i = −3

(

Rη̃i +
5

3
+

4

3
λi

)

|m3/2|2 −
(

Rη̃i + 3
)

V , (3.41)

in terms of the holomorphic sectional curvatures defined by the rotated complex structures

Jiuv = Jx
uvv

x
i , which are given by:

Rη̃i ≡ Rxy
η̃ vx

i v
y
i (no sum on i) . (3.42)

The metastability condition (m2
0 ≥ 0 if V ≥ 0 and m2

0 ≥ 3
4V if V < 0) applied to m2

η̃i

then implies

Rη̃i ≤



















−5+4λi

3

1+ 9
5+4λi

γ

1 + γ
, γ ≥ 0 ,

−5+4λi

3

1+ 45
4(5+4λi)

γ

1 + γ
, γ ≤ 0 .

(3.43)

Summarizing, we see that in N = 2 theories we get three conditions, all similar to

the one of N = 1. They are associated with three of the partners of the two independent

Goldstinos. Note however that the coefficients in the quantities m2
η̃i differ from the coef-

ficients in the N = 1 quantity m2
η̃ given in (2.20). This is reasonable, since the geometry

is quaternionic-Kähler for N = 2 and Kähler-Hodge for N = 1, and these two kinds of

geometries are unrelated.11 Furthermore, note that the sectional curvatures enter (2.20)

and (3.41) with a different sign, once compatible conventions for real and complex manifolds

11A notable exception to this general fact is given by the family of coset manifolds SU(2, n)/(U(1) ×

SU(2) × SU(n)), which turn out to be both Kähler-Hodge and quaternionic-Kähler.
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are used (see appendix B). This results in opposite inequality signs in the metastability

constraints on the sectional curvature given in (2.23) and (3.43).

Before we proceed let us inspect the limit where gravity is decoupled by sending the

Planck scale to infinity. In this limit, the N = 2 geometry becomes Hyperkähler while the

N = 1 geometry becomes Kähler. The two geometries are then related, in the sense that

the former is just a subclass of the latter. As a result, N = 2 theories reduce to a special

case of N = 1 theories, and the metastability conditions arising in the two cases can be

directly compared. In this rigid limit, however, in which the graviton, the gravitino and

the graviphoton are decoupled, the scalar potential of N = 2 theories with only hypermul-

tiplets becomes trivial. This corresponds to the fact that from the N = 1 perspective the

superpotential vanishes. As a result also the sGoldstino masses go to zero, independently

of the curvature of the Hyperkähler manifold and we have

m2
η̃i ≃ 0 . (3.44)

This means that in this limit the N = 2 conditions can never really be satisfied, since the

potential identically vanishes and thus the scalar fields cannot be stabilized. The N = 1

conditions implied by (2.24), on the other hand, can be satisfied for models with suitable

geometry, but when the superpotential is sent to zero the scalar masses flow to zero also

in this case.

Up to now we have not used the fact that quaternionic-Kähler manifolds have a con-

strained curvature tensor with a sectional curvature given in (3.38). Similarly, the Rη̃i that

appear in (3.41) take the form:

Rη̃i = −2 + ∆i(Σ) , (3.45)

where

∆i(Σ) ≡ ΣαβγδN
αANβBNγCN δD

(N ǫENǫE)2
vx
i σ

x
ABv

y
i σ

y
CD (no sum on i) . (3.46)

So the metastability conditions constrain the allowed values for the quantities ∆i(Σ), for

a given value of the parameter γ.

As a first remark, note that for those particular quaternionic-Kähler manifolds for

which the tensor Σαβγδ vanishes, the situation simplifies substantially.12 Indeed, in that

case one simply has Rη̃i = −2, and thus m2
η̃i = (1 − 4λi)|m3/2|2 − V , that is m2

η̃1 =

−V − 3 |m3/2|2 in the direction parallel to P x and m2
η̃2,3 = −V + |m3/2|2 along the two

directions orthogonal to P x. These satisfy the stability bound only if γ ∈ [−1,−4
7 ], and

thus Minkowski/dS vacua are excluded.

Even for more general quaternionic-Kähler manifolds with Σ 6= 0, we can actually

obtain a stronger constraint from (3.41). Notice in this respect that the three square

masses (3.41) transform as a triplet under SU(2) R-symmetry transformations, reflecting

the fact that they are associated with the triplet of almost complex structures existing on

quaternionic-Kähler manifolds. One may then try to look for an SU(2) singlet projection

12These correspond to the family of coset manifolds Sp(2, 2n)/(Sp(2) × Sp(2n)).
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and check whether it leads to any useful information. From the point of view of the

original mass matrix m2xy
η̃ , the only object that could lead to such a thing is the trace. More

precisely, one can consider the average of the diagonal elements, which by the completeness

relation in (3.39) also corresponds to the average of the three masses m2
η̃i computed above:

m2
η̃ ≡ 1

3
δxym2xy

η̃ =
1

3

∑

i
m2

η̃i . (3.47)

Using (3.35) one arrives at

m2
η̃ = −3

(

Rη̃ +
19

9

)

|m3/2|2 −
(

Rη̃ + 3
)

V , (3.48)

where Rη̃ is the averaged sectional curvature

Rη̃ ≡ 1

3
δxyRxy =

1

3

∑

i
Rη̃i . (3.49)

Note now that m2
η̃ also gives an upper bound on the smallest mass eigenvalue, as a conse-

quence of the fact that each m2
η̃i gives itself a lower bound.13 The metastability condition

applied to m2
η̃ then implies

Rη̃ ≤



















−19

9

1+ 27
19 γ

1 + γ
, γ ≥ 0 ,

−19

9

1+ 135
76 γ

1 + γ
, γ ≤ 0 .

(3.50)

The crucial observation that one can make at this point is that the averaged sectional

curvature Rη̃ actually is independent of the tensor Σαβγδ and thus takes a universal value

common to all the possible quaternionic-Kähler manifolds. Indeed, using the property (3.2)

in (3.45) and (3.49), one finds:14

Rη̃ = −2 − 2

3

ΣαβγδN
αANβBNγCN δD

(N ǫENǫE)2
ǫABǫCD = −2 . (3.51)

Inserting (3.51) into (3.48) one then finds the simple expression

m2
η̃ = −1

3

(

1 + 9 γ
)

|m3/2|2 . (3.52)

This satisfies the metastability bound only for

γ ∈
[

−1,− 4

63

]

. (3.53)

13Indeed, m2

η̃ is the averaged trace of the matrix, and gives thus the average of the eigenvalues. Each

m2

η̃i is instead just the projection of the matrix along a specific direction, and is thus a combination of

the eigenvalues with coefficients whose square sum up to 1. In both cases, the resulting value is clearly an

upper bound to the smallest eigenvalue of m2xy
η̃ , and thus also of the full mass matrix m2

0uv.
14This follows from the fact that the contraction NαANβBǫAB is antisymmetric in α, β whereas the tensor

Σαβγδ is completely symmetric in all indices.
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Notice that this restriction implies in paticular that dS vacua are always excluded.15 This

is unavoidable and holds true for any scalar geometry.16 AdS vacua, on the other hand,

are allowed if they satisfy (3.53). This represents the main result of our investigation.

Notice finally that the product of several quaternionic-Kähler manifolds is no longer

a quaternionic-Kähler manifold. This is a consequence of the particular form that the

Riemann curvature tensor must take. More precisely, the Ricci- and scalar curvatures

are completely fixed by the dimensionality of the space (c.f. (3.8)), and this relation is

destroyed when taking the product of two of such manifolds. Thus, there is no easy way of

diluting the curvature just by taking products of manifolds and thus the bound is always

unavoidably violated.

4. Conclusions and outlook

In this paper we have performed a general study on the conditions under which locally

stable vacua with spontaneously broken supersymmetry can occur in N = 2 supergravity

theories with only hypermultiplets. The results have been compared with the correspond-

ing conditions that were already known for N = 1 supergravity theories with only chiral

multiplets [1, 2]. As in the N = 1 case, our strategy has been to look at the most danger-

ous scalar fluctuations, which are the ones related to the scalar partners of the Goldstino

fermion, the sGoldstinos.

In the N = 1 case the constraint can be formulated as a lower bound on the curvature

of the scalar manifold spanned by the scalar components of the chiral multiplets. More

concretely, they represent a lower bound on the holomorphic sectional curvature in the

complex sGoldstino direction defined by the complex structure of the Kähler-Hodge scalar

manifold. They constrain therefore both the allowed scalar geometries and the allowed

supersymmetry breaking directions. In the N = 2 case, we have found that there are

three constraints on the curvature of the scalar manifold, which are all similar to the one

arising in N = 1 theories. This corresponds to the fact that in this case there are more

sGoldstinos. More precisely, one finds an upper bound on the three possible holomorphic

sectional curvatures in the complex sGoldstino directions defined by the three almost com-

plex structures of the quaternionic-Kähler scalar manifold. However, it turns out that the

quaternionic-Kähler geometry underlying N = 2 models implies a very restricted form of

the curvature tensor, which is completely fixed up to a Weyl-type contribution Σ. This is in

contrast with the Kähler-Hodge geometry underlying N = 1 theories, which allows instead

for a generic curvature tensor. As a consequence, the average of the three holomorphic sec-

tional curvatures arising in the N = 2 constraints happens to have a fixed constant value

15This result was already know to hold for the particular subclasses of quaternionic-Kähler manifolds for

which n = 1 as well as those with n > 1 and Σαβγδ = 0 [17].
16There is an apparent counter-example of this result in ref. [18], where a metastable dS vacuum was

found in the universal hypermultiplet geometry with instanton corrections taken into account. However the

approximation used does not keep the metric quaternionic and we suspect that the dS vacuum is destabilized

once the higher instanton corrections required to make the metric quaternionic are included. We understand

that preliminary investigations point in this direction and we thank F. Saueressig for discussions on this

issue.
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independent of Σ, which translates into a universal negative upper bound on the values of

the cosmological constant that are compatible with the metastability of the vacuum. This

implies in particular that metastable dS vacua are excluded, independently of the specific

scalar geometry of the model.17

The strong results that we find for N = 2 theories in the case with only hypermulti-

plets are very similar to the comparably strong results holding in the case in which only

vector multiplets are present and the gauging is Abelian [5, 6]. They both have to do

with the restricted form that the curvature of the scalar manifolds, which are respectively

quaternionic-Kähler and special-Kähler, is allowed to take. In fact, the upper bounds on

the lowest mass eigenvalue in these two special cases read

m2
hyper ≤ −V − 1

3
|m3/2|2 ,

m2
vector ≤ −2V .

(4.1)

Similar tachyonic modes seem to be endemic also in N > 2 theories; see for instance

refs. [20].

Another interesting information one can deduce from the stability bounds (4.1) con-

cerns dS stationary points. For example they could be of potential interest for achieving

inflation. Note nevertheless that there will be at least one direction in field space along

which |V ′′|/V ∼ 1, implying that the conditions for slow-roll inflation are never satisfied.

In more general situations of N = 2 supergravity theories involving both vector and

hypermultiplets, as well as non-Abelian gauging, some examples of models giving rise to

dS spaces are known to exist [8]. It is clear that an analysis of the same type as the one

presented here for these more general situations would also be very valuable, as it could

provide some insights on what are the really necessary ingredients to construct models ad-

mitting a stable dS vacuum [7]. For instance, it is obvious that non-Abelian gaugings help,

since then a new positive-definite term arises in the scalar potential. But even for Abelian

gaugings, combining vector multiplets with hypermultiplets may be sufficient to be able

to avoid tachyons, since in that case the scalar manifold is the product of a quaternionic-

Kähler and special-Kähler manifolds, which as a whole can have a lower sectional curvature

than any of its two components. Of course, even after having understood more precisely

the conditions for achieving dS vacua within N = 2 supergravity effective theories, another

interesting question would be whether these can be realized in string theory.
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J.L. thanks Luis Alvarez-Gaumé and the CERN Theory Division for hospitality and

financial support during the initial part of this work.

A. Supertrace sum rule on the masses

In this appendix we report some details on the computation of the supertrace of the square

mass operator for all the fields. This quantity is of some interest, since it controls the leading

quadratic divergences arising at the one loop level when supersymmetry is spontaneously

broken, at least in the case of a flat Minkowski space with vanishing cosmological constant.

We will first shortly review the know case of N = 1 theories and then present the same

computation for N = 2 models.

A.1 N = 1 theories with chiral multiplets

Using the expressions given in section 2.1 for the mass matrices of the various fields, one

finds that at a generic stationary point with any allowed cosmological constant:

tr[m2
0] = 2∇iNk∇iN̄k − 2Ri̄N̄

iN ̄ + 2(n − 1)N̄kNk − 4n|L|2 , (A.1)

tr[m2
1/2] = ∇iNk∇iN̄k − 8

3
N̄kNk +

4

9
(N̄kNk)

2|L|−2 , (A.2)

tr[m2
3/2] = |L|2 . (A.3)

It follows that: [21]

str[m2] = tr[m2
0] − 2 tr[m2

1/2] − 4 tr[m2
3/2]

= 2(n− 1)m2
3/2 + 2Ri̄N̄

iN ̄ + 2(n − 1)V − 8

9
V 2|m3/2|−2 .

(A.4)

In terms of γ = V/(3|m3/2|2), this finally gives:

str[m2] =
[

2(n− 1) + 6(n − 1)γ − 8γ2
]

|m3/2|2 + 2Ri̄N̄
iN ̄ . (A.5)

Note that for Kähler manifolds that happen to be also Einstein spaces, with a Ricci

tensor of the form

Ri̄ = rgi̄ , (A.6)

the formula simplifies as follows:

str[m2] =
[

2(n− 1 + 3r) + 6(n − 1 + r)γ − 8γ2
]

|m3/2|2 . (A.7)

Note finally that for supersymmetric vacua with γ = −1 one finds:

str[m2] = −4(n+ 1)|m3/2|2 . (A.8)
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A.2 N = 2 theories with hypermultiplets

Using the expressions derived in section 3.1 for the mass matrices of the various fields, as

well as eq. (3.8), one can compute the traces of the square mass for each field at a generic

stationary point of the scalar potential. After some algebra, and repeated use of the various

identities listed at the beginning of section 3, we find the following results:

tr[m2
0] = 4∇ukv∇ukv + 4(2n − 5)kuku − 12nP xP x , (A.9)

tr[m2
1/2] = 2∇ukv∇ukv − 16kuku − 2nP xP x +

128

9
(kuku)2(P xP x)−1 , (A.10)

tr[m2
1] = 4kuku , (A.11)

tr[m2
3/2] = 2P xP x . (A.12)

Using these result, the supertrace is found to be:

str[m2] = tr[m2
0] − 2 tr[m2

1/2] + 3 tr[m2
1] − 4 tr[m2

3/2]

= −
(

2n + 6
)

|m3/2|2 +

(

2n− 14

3

)

V − 16

9
V 2|m3/2|−2 .

(A.13)

In terms of γ = V/(3|m3/2|2), this finally reads:

str[m2] =
[

−
(

2n+ 6
)

+
(

6n− 14
)

γ − 16γ2
]

|m3/2|2 . (A.14)

Note that for supersymmetric vacua with γ = −1 one finds:

str[m2] = −8(n+ 1) |m3/2|2 . (A.15)

B. Curvature conventions

In this appendix, we summarize our conventions for the curvature tensor and the sectional

curvature, first for generic real Riemann manifolds and then for complex Kähler manifolds.

B.1 Riemann manifolds

For the geometry of a generic real Riemann manifold, we use the following conventions.

Denoting the components of the metric with guv, the Christoffel connection is Γk
uv =

1
2g

kl
(

∂ugvl + ∂vgul − ∂lguv

)

. The Riemann tensor is defined as

Ru
vkl = ∂kΓ

u
vl − ∂lΓ

u
vk + Γi

ksΓ
s
jl − Γi

lsΓ
s
jk . (B.1)

The Ricci curvature tensor is then:

Rij = Rs
isj , (B.2)

and finally the scalar curvature is given by:

R = Rs
s . (B.3)

– 20 –



J
H
E
P
0
2
(
2
0
0
9
)
0
0
3

The ordinary covariant derivatives on vectors is defined as DuVv = ∂uVv − Γs
uvVs, and the

commutator of two of them gives:

[

Du,Dv

]

Vk = R l
uvk Vl . (B.4)

The sectional curvature in a plane defined by two orthogonal vectors Au and Bv, with

AuBu = 0, is finally defined as:

R(A,B) =
RuvklA

uBvAkBl

ArAr BsBs
. (B.5)

B.2 Kähler manifolds

For complex Kähler manifolds admitting a globally-defined complex structure Juv, it is

convenient to switch to complex coordinates in which this is block diagonal with values ±i.
The Hermitian metric has non-vanishing components gi̄ and gı̄j , and satisfies the conditions

∂igjk̄ = ∂jgik̄ and ∂ı̄g̄k = ∂̄gı̄k. It follows then that the non-vanishing components of the

Christoffel connection are Γk
ij = gkl̄∂igjl̄ and Γk̄

ı̄̄ = gk̄l∂ı̄g̄l. The non-vanishing components

of the Riemann tensor are then:

Ri̄kl̄ = ∂i∂̄gkl̄ + gr̄s∂igkr̄∂̄gl̄s , (B.6)

Rı̄jkl̄ = −Rjı̄kl̄ , Ri̄k̄l = −Ri̄lk̄ , Rı̄jk̄l = Rjı̄lk̄ . (B.7)

The Riemann tensor has in this case the additional property of being symmetric under

the exchange of indices of the same holomophic or antiholomorphic type: Ri̄kl̄ = Rk̄il̄ =

Ril̄k̄ = Rkl̄i̄. The Ricci curvature tensor has then as only non-vanishing components

Ri̄ = −grs̄Rrs̄i̄ , Rı̄j = Rjı̄ . (B.8)

Finally, the scalar curvature is given by:

R = 2grs̄Rrs̄ . (B.9)

The ordinary covariant derivatives on holomorphic vectors (similar formulae hold for anti-

holomorphic vectors) read DiVj = ∂iVj − Γs
ijVs and Dı̄Vj = ∂ı̄Vj, and the commutator of

two of them gives:
[

Di,D̄

]

Vk = R l
i̄k Vl . (B.10)

The holomorphic sectional curvature in a plane defined by a vector and its conjugate under

the complex structure, defining in complex coordinates a holomorphic vector Zi and its

antiholomorphic counterpart Zı̄, is finally given by:

R(Z) = −
Ri̄kl̄Z

iZ ̄ZkZ l̄

(ZpZp)2
. (B.11)
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